

CCAT-prime Status of Prime-Cam and related Instrumentation

Prime-Cam team

(authors at https://arxiv.org/abs/1908.10451 plus others)

CCAT-prime

Topics:

Overview of Instruments

Overview of Prime-Cam and instrument modules - Mike Niemack Prime-Cam instrument performance overview - Steve Choi Mod-Cam single module tester and first light module - Eve Vavagiakis

Broadband Technologies

Broadband optical module design and performance - Patricio Gallardo Detector heritage and BLAST performance - Jordan Wheeler/NIST First light detector array and readout development - Cody Duell

Spectrometer Technologies

Spectrometer module overview - Nick Cothard Spectrometer module optical design performance - Zach Huber Prototype Fabry Perot Interferometer (FPI) etalons - Bugao Zou FPI optimization for observations - Mahiro Abe and Thomas Nikola

350 um Module Updates - Doug Henke and Scott Chapman

Next steps for Prime-Cam - Mike Niemack

Overview of Prime-Cam (Mike Niemack)

A unique feature of the CCAT-prime optics design is the large field of view

Prime-Cam is a high-throughput instrument that fills $\sim \frac{1}{2}$ the diameter of the FOV

Prime-Cam has 7 "instrument modules" enabling simultaneous observations

Design evolved from Simons Observatory 13 module (aka. optics tube) cryostat

Cryostat delivery expected in Summer 2020

Overview of Prime-Cam

Many science cases to be discussed later

Science prioritization should continue driving instrument module distribution

Current module priorities:

- Broadband polarimeters:
 280 GHz at first light, then 350 GHz
- Spectrometer (210 420 GHz)
- 850 GHz (350 um) polarimeter

Need to test modules after Prime-Cam deployment => Mod-Cam

Fig. 1: A model of the Prime-Cam cryostat (1.8 m diameter) is shown with a possible configuration of broadband and spectrometer instrument module positions.

Instrument performance overview (Steve Choi) – detector passbands

- Reference detector passbands selected upon further inspection of the atmosphere with the am code.
- Passbands moved to remove overlaps and avoid strong atmospheric lines.
- Transmission up to 6% higher than before (up to ~30% better sensitivity).
- PWV values in the legend account for observing elevation of 45 deg.

Instrument performance overview (Steve Choi) – detector size & technology choice

- Bigger detectors:
 - More light in the beam -- higher spill efficiency
 - Smaller illumination (bigger beam size) -- lower taper efficiency
 - Smaller number of total pixels
- Smaller detectors:
 - Less light in the beam -- lower spill efficiency
 - Bigger illumination (smaller beam size) -- higher taper efficiency
 - Bigger number of total pixels
- Reference detector choice: TES → KID based on sensitivity calculations.

Instrument performance overview (Steve Choi) – noise curves

- Noise curves calculated for baseline design with KIDs.
- White noise from instantaneous sensitivities from Gordon's spreadsheet with updated input (transmission, efficiency, etc.)
- SO atmosphere (fluctuation) noise model included for 1/f noise.
- In use by some science forecast teams (by both CCAT and SO).

Instrument performance overview (Steve Choi) – sensitivity summary

- Instantaneous and integrated sensitivity given for:
 - \circ 15,000 deg² wide survey
 - \circ 410 deg² deep survey
 - 8 deg² spectrometer survey

•
$$N_{\ell} = N_{\text{red}} \left(\frac{\ell}{\ell_{\text{knee}}} \right)^{\alpha_{\text{knee}}} + N_{\text{white}}$$

•
$$\ell_{\text{knee}} = 1000, a = -3.5 \text{ for Temp.}$$

• $\ell_{\text{knee}} = 700, a = -1.4 \text{ for Pol.}$

Broadband channels wide survey (15,000 deg ² ; 4,000 hours)							
v	Δv	Resolution	NEI	Sensitivity	NET	N _{white}	N _{red}
GHz	GHz	arcsec	Jy sr ^{-1} \sqrt{s}	μ K-arcmin	$\mu K \sqrt{s}$	μK^2	μK^2
220	56	57	3,700	15	7.6	1.8×10^{-5}	1.6×10^{-2}
280	60	45	6,100	27	14	6.4×10^{-5}	1.1×10^{-1}
350	35	35	16,500	105	54	9.3×10^{-4}	2.7×10^{0}
410	30	30	39,400	372	192	1.2×10^{-2}	1.7×10^{1}
850	97	14	$6.0 \times 10^{7\dagger}$	5.7×10^{5}	3.0×10^{5}	2.8×10^{4}	6.1×10^{6}

Broadband channels star formation survey in 1st quartile PWV (410 deg²; 680 hours)

v GHz	Δv GHz	Resolution arcsec	$\frac{\text{NEI}}{\text{Jy sr}^{-1}\sqrt{s}}$	Sensitivity µK-arcmin	NET $\mu K \sqrt{s}$	$\frac{N_{\rm white}}{\mu { m K}^2}$	$\frac{N_{\rm red}}{\mu {\rm K}^2}$
220	56	57	3,000	6	6.3	2.9×10^{-6}	2.5×10^{-3}
280	60	45	4,900	11	11	1.0×10^{-5}	1.7×10^{-2}
350	35	35	12,300	42	40	1.5×10^{-4}	4.3×10^{-1}
410	30	30	27,400	149	134	1.9×10^{-3}	2.7×10^{0}
850	97	14	$3.8 \times 10^{7\dagger}$	2.3×10^{5}	1.9×10^{5}	4.5×10^{3}	9.8×10^{5}

Selected spectrometer channels targeted survey (8 deg ² ; 4,000 hours)							
v	Δv^*	Resolution	[CII] redshift	NEI	N _{white}		
GHz	GHz	arcsec		Jy sr ^{-1} \sqrt{s}	Mpc ³ Jy ² sr ⁻²		
220	2.2	57	7.5	12,900	1.2×10^{9}		
280	2.8	45	5.8	16,600	2.0×10^{9}		
350	3.5	35	4.4	30,600	6.3×10^{9}		
410	4.1	30	3.7	61,500	2.3×10 ¹⁰		

(Choi et al. arXiv:1908.10451)

-8

Mod-Cam (Eve Vavagiakis, Cornell)

- Single optics module for first light and testbed for Prime-Cam
- Side-car DR design enables easy rear swapping of modules
- Optics tubes can be SO size or smaller
- Flexible readout options, compatible with SO readout design

Mod-Cam (Eve Vavagiakis, Cornell) First optics module in construction Cantilevered 4 K welded AI 1100 cylinders on 4 K plate of cryostat **0 - -**sky Р 4-1 K Carbon Fiber Heat sink to DR 1 K welded Al 1100 cylinders 100 mK detector array g 10

Mod-Cam (Eve Vavagiakis, Cornell)

- Fabrication underway, expect delivery before Cornell labs open
- First fit checks begun

.45 meters

- Laboratory space prepped
- Silicon lens material ready

Broadband module optics (Patricio Gallardo)

Detector Heritage (Jordan Wheeler/NIST) Large Format MKID Detector Arrays

BLAST-TNG:

Balloon-borne mission recently launched

ToITEC:

3 detector wafers all delivered and now integrated into instrument cryostat

Detector Heritage BLAST-TNG (Jordan Wheeler/NIST)

Preliminary Flight Data Credit: Adrian Sinclair ASU

Sky dip +/- 5 degrees

350um ~ 300uK/rtHz ~600uK/rtHz? Data analysis is an ongoing process

Detector Heritage ToITEC (Jordan Wheeler/NIST)

1.1mm Toltec array mounted behind silicon feedhorn stacks. RF shield removed.

Beam map centroids found for 3748/3984 optical resonators

4012 resonators (inc. darks) split onto 7 networks (color coded on right)

Detector Heritage ToITEC (Jordan Wheeler/NIST)

1.1mm Toltec array inside magnetic shielding and behind low-pass filter. Looking at UMASS cold load

Photon-limited noise performance (NIST cold load tests, not from setup to left)

Consistent w/ expectations from simulation

Excited to deliver the best MKIDs yet for CCAT-prime!

First light detector array and readout (Cody Duell) CCAT-prime

- First detector array will have ~3500 polarization-sensitive kinetic inductance detectors (KIDs) for observing at 280 GHz (1.1 mm)
- Wafer layout and detector designs complete
 - Received first dummy mechanical wafer!
 - Final arrays are ready for fab pending mechanical tests
- Mechanical designs (array mount + feedhorns) complete; currently being fabricated at ASU (Phil Mauskopf, Chris Groppi et. al.) for mechanical tests and integration this year

Above: Focal plane layout of a single instr. module with 3 arrays **Right**: Mechanical designs of a single array mount **Middle**: Mechanical test dummy wafer **Far left**: sample spline profile feedhorn cut (design from Sara

Simon)

First light detector array and readout (Cody Duell) cCAT-prime

- For readout, able to borrow heavily from BLAST-TNG & ToITEC readout using ROACH-2 systems at first light (not feasible for fully-populated Prime-Cam) (arXiv:<u>1611.05400</u>)
 - 500-1000 detectors per ROACH-2 system
- Looking forward: intend to use Xilinx RFSoC-based readout to reduce power consumption and get ~5-10x readout bandwidth
- Biweekly calls for several RFSoC-based readout projects led by Gustavo Cancelo at Fermilab

Above: RF/IF components for interfacing with ROACH-2

Left: ROACH-2 system

Far left: Xilinx RFSoC

First light detector array and readout (Cody Duell) CCAT-prime

The current readout testbed (my guest room)...

EoR-Spectrometer module overview (Nick Cothard) cca

- [CII] line intensity mapping between redshifts 3.5-8
 - Measure aggregate emission from star forming galaxies, hence process of re-ionization
 - Trace evolution of structure during early galaxy formation
- Much more on EoR LIM tomorrow (Weds at 10am EST)

- Scanning Fabry-Perot Interferometer (FPI)
 - Spectral resolution $R \approx 100$
 - 210 420 GHz
 - Second and third orders in-band
- Focal plane detector arrays
 - Low and high band KID arrays
 - Spectrally multiplex observations

EoR-Spec module design (Nick Cothard)

- Silicon lenses
 - Optimized for well collimated beams at the cryogenic FPI
- Scanning, cryogenic, silicon-substrate FPI
 - \circ ~14 cm silicon substrate mirrors: RP and λ shift
 - Low-loss, high thermal and mechanical performance
 - Metamaterial ARCs and reflective meshes
 - 2nd and 3rd order fringes imaged simultaneously
- Superconducting detector arrays
 - Baseline technology: KIDs
 - \circ $\,$ Two low-band, one high-band arrays
 - Band-defining filters from Cardiff used on each array

Spectrometer module optics (Zach Huber)

- Broadband Design highly concentrated F/# at Lyot stop leads to telecentric beam at focal plane
- Spectrometer optics much higher F/#s indicate highly collimated beam at Lyot stop this is necessary to achieve resolving powers of > 100

Prototype FPI etalons (Bugao Zou)

Silicon substrate based mirrors instead of free-standing metal meshes

Metal mesh reflectors

- Evaporation and lift-off lithography techniques
- Combination of inductive and capacitive meshes
- Resolving power ~100 at 2nd and 3rd order

Metamaterial anti-reflective coatings

- Micromachined with deep reactive ion etching
- Mitigate strong Fresnel reflections of silicon
- Multiple layers \rightarrow wider bandwidth

Metal meshes AR Coatings (Cothard et al. 2018 arXiv:1807.06019) (Gallardo et al. 2016 arXiv:1610.07655)

Prototype FPI etalons (Bugao Zou)

- Fourier Transform Spectrometry (FTS) measurements and FPI mechanicals ongoing
- Capacitive metrology

Different FPI mounting designs

Mirror system

FTS measurements for fixed FPI ²⁴

Detector

FPI optimization for observations (Mahiro Abe)

Three detector arrays assigned to cover 2nd and 3rd order FPI modes (spectral multiplexing)

Off-axis beams blue-shifted from FPI resonant frequency (spatial multiplexing)

Optimization for uniform sensitivity over 210-420 GHz band

- FPI diameter
- FPI scan steps
- map sensitivity \propto sqrt(# pixels)

Next optimization steps:

- collimation distortion, beam walk-off,
 FPI transmission and resolving power
- sky scan strategy

26

First-light/Commissioning camera optical study
 Small FoV ~ 0.

- Reduced scope to lessen complexity, cost, and build time
- 10 mm thick x 180 mm diameter UHMWPE lenses
- No AR; Re-use existing instrument module design
- Later to be replaced with more powerful science module

- f/5.556, image size of 140 mm
 - \circ 1.80 F- λ for MKID BLAST-TNG horns (3.5 mm pixels)
 - \circ 0.54 F- λ for TES (MBAC, 1.1 mm² pixels)

• NEP ~
$$4x10^{-16}$$
 W·Hz^{-1/2}

350µm module development (RTI/CFI, Scott Chapman)

- ~\$3M (CAD) CFI budget for Prime-Cam-350µm; UBC experience with sub-K instrumentation and readout development; project management experience from other big projects (GIRMOS, CHIME): ~2023 integration with Prime-Cam; NRC-HAA in-kind contributions are likely possible.
- Readout development plan; current ROACH2 systems (e.g., BLAST-TNG) 500-1000 detectors readout per coax pair (~512MHz for BLAST-TNG, detectors from 500MHz to 1.12GHz); would require <u>~30 ROACH2</u> to readout 18,000 detectors (solution below)
- Baseline of 3x 15cm KID arrays (total ~18,000 detectors) from NIST ; Similar KIDs with metal feedhorns flown on the BLAST-TNG ; 1deg FoV achieves 1.4 F-λ spacing (Vavagiakis et al. 2018).

Next steps for Prime-Cam (Mike Niemack)

- Integrate and test Mod-Cam and Prime-Cam at Cornell
- Build first light 280 GHz module
 - Internally funded and proceeding in Cody's house
 - Aim to add 350 GHz array to this module
- Waiting to hear on proposals for:
 - 350 GHz capability
 - Spectrometer modules
 - 850 GHz (350 um) module (Canadian)
- We welcome input on frequencies/capabilities to prioritize in new proposals
- 6 more modules to go ... would YOU like to help?

